Generalized self-concordant analysis of Frank–Wolfe algorithms

نویسندگان

چکیده

Abstract Projection-free optimization via different variants of the Frank–Wolfe method has become one cornerstones large scale for machine learning and computational statistics. Numerous applications within these fields involve minimization functions with self-concordance like properties. Such generalized self-concordant do not necessarily feature a Lipschitz continuous gradient, nor are they strongly convex, making them challenging class first-order methods. Indeed, in number applications, such as inverse covariance estimation or distance-weighted discrimination problems binary classification, loss is given by function having potentially unbounded curvature. For projection-free methods have no theoretical convergence guarantee. This paper closes this apparent gap literature developing provably convergent algorithms standard $$\mathcal {O}(1/k)$$ O ( 1 / k ) rate guarantees. Based on new insights, we show how sublinearly can be accelerated to yield linearly methods, either relying availability local liner oracle, suitable modification away-step method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods

We study the smooth structure of convex functions by generalizing a powerful concept so-called self-concordance introduced by Nesterov and Nemirovskii in the early 1990s to a broader class of convex functions, which we call generalized self-concordant functions. This notion allows us to develop a unified framework for designing Newton-type methods to solve convex optimization problems. The prop...

متن کامل

On self-concordant barriers for generalized power cones

In the study of interior-point methods for nonsymmetric conic optimization and their applications, Nesterov [5] introduced the power cone, together with a 4-selfconcordant barrier for it. In his PhD thesis, Chares [2] found an improved 3-selfconcordant barrier for the power cone. In addition, he introduced the generalized power cone, and conjectured a “nearly optimal” self-concordant barrier fo...

متن کامل

Self-concordant analysis for logistic regression

Most of the non-asymptotic theoretical work in regression is carried out for the square loss, where estimators can be obtained through closed-form expressions. In this paper, we use and extend tools from the convex optimization literature, namely self-concordant functions, to provide simple extensions of theoretical results for the square loss to the logistic loss. We apply the extension techni...

متن کامل

Composite self-concordant minimization

We propose a variable metric framework for minimizing the sum of a self-concordant function and a possibly non-smooth convex function, endowed with an easily computable proximal operator. We theoretically establish the convergence of our framework without relying on the usual Lipschitz gradient assumption on the smooth part. An important highlight of our work is a new set of analytic step-size ...

متن کامل

Constructing self-concordant barriers for convex cones

In this paper we develop a technique for constructing self-concordant barriers for convex cones. We start from a simple proof for a variant of standard result [1] on transformation of a ν-self-concordant barrier for a set into a self-concordant barrier for its conic hull with parameter (3.08 √ ν + 3.57)2. Further, we develop a convenient composition theorem for constructing barriers directly fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2022

ISSN: ['0025-5610', '1436-4646']

DOI: https://doi.org/10.1007/s10107-022-01771-1